

H₂ burner for Electric Arc Furnace: Hitting a new milestone towards a sustainable steel production

J. Greguoldo: Product Innovation and Industrialization Steelmaking

M. Daita: Technical Sales & Project Management Steelmaking

Workshop in RINA Consulting, Dalmine - Apr 4th, 2024

H₂ burner for Electric Arc Furnace

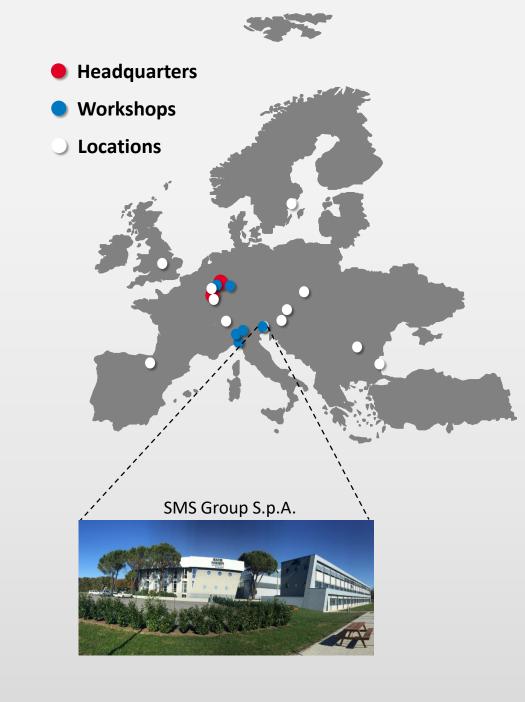
AGENDA

- 1. EAF Technologies for Green Steel production: How SMS combine de-carbonization, energy saving and limited environmental emissions in modern electric steelmaking
- 2. SMS H₂ Burner design
- 3. Test in Dalmine, RINA Experimental Combustion Station
- 4. Conclusions

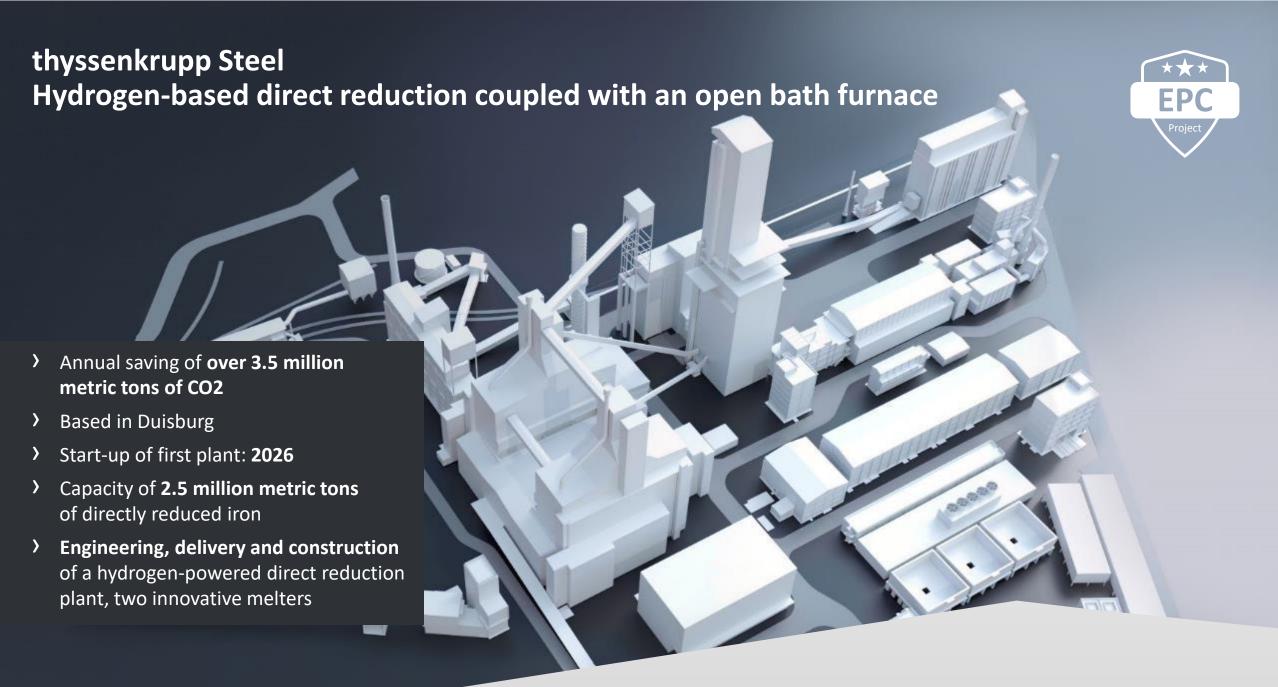
H2 Green Steel
Electric Arc Furnace with H₂ DRI feeding

This is SMS group

SMS group is renowned worldwide for its forward-thinking technologies and outstanding services in the metals industry.


We apply our **150 years** of experience and digital know-how to continuously innovate products and processes inside and outside our industry.

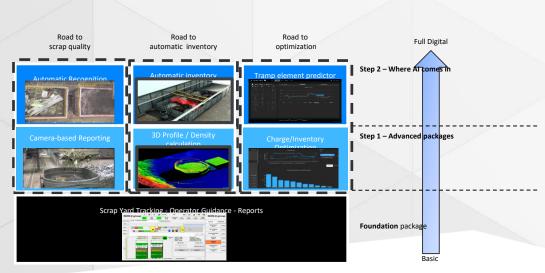
As a partner for the most demanding projects, SMS accompanies its customers throughout the entire lifecycle of their plants, thus enabling profitable and resource-saving value chains.


Our mission is to turn metals green and to advance climateneutral and sustainable metals production.

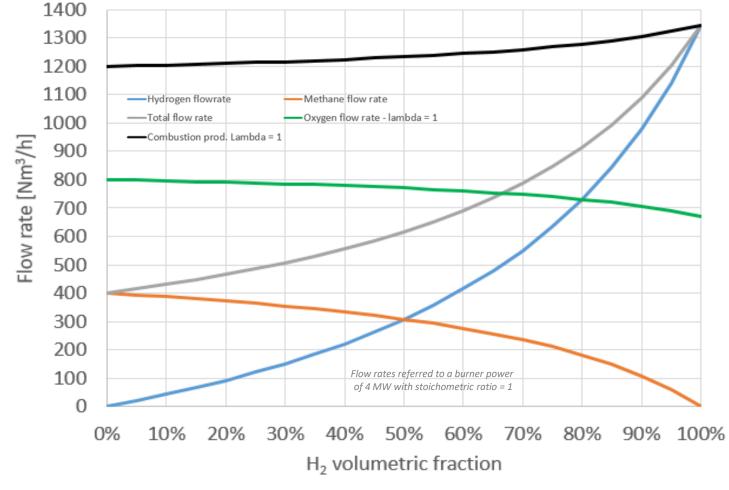
Our mission:

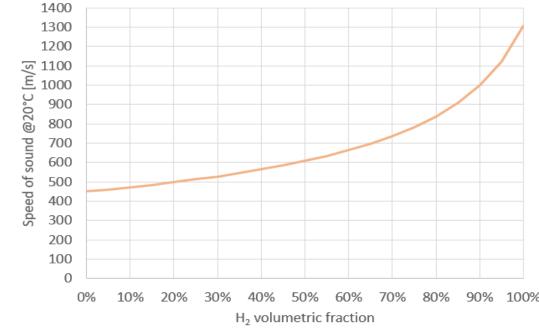
#turningmetalsgreen

EAF Technologies for Green Steel production

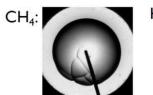


			Energy savings	Fossil source decrease	Electrification H ₂ economy	Recycling
X-Pact AURA o	digital power		©	©	©	
Condoor			©	©		
Allcharge		\odot	\odot		©	
Scrap Manage	ment					©
H ₂ burners				☺	☺	

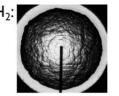




The $CH_4 + H_2 / O_2$ combustion fundamentals


$$CH_4 + 2 O_2 \leftrightarrow CO_2 + 2 H_2 O$$

$$H_2 + 0.5 O_2 \leftrightarrow H_2 O$$



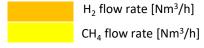
This work was carried out with support from the European Union's Research Fund for Coal and Steel (RFCS) research program under the ongoing project: DevH2forEAF- GA number: 101034081

∏Parameter	Natural Gas	Hydrogen	
Ignition temperature (°C)	556	560	
Adiabatic Flame Temperature (°C)	2780	2806	
Flammability limit (%)	From 5.4 to 59	From 4 to 94	
Flame speed (cm/s)	30-40	200-300	

Reaction front of a spherical flame

Full scale combustion chamber testing @ RINA Dalmine

Following tests have been performed: all combinations of


- thermal power from 1.0 to 2.9 MW (*)
- composition from 100% CH₄ to 100% H₂

(*) The maximum achievable power has been determined by the physical limits of RINA's supply infrastructure.

		MW						
		1.00	1.50	2.00	2.50	2.90		
%Н2	0%	0	0	0	0	0		
		101	151	202	252	293		
	20%	23	35	47	59	68		
		94	141	188	235	272		
	40%	56	84	112	140	163		
		84	126	168	210	244		
	60%	104	157	209	261	303		
		70	104	139	174	202		
	80%	183	275	367	458	532		
		46	69	92	115	133		
	100%	336	504	672	841	975		
		0	0	0	0	0		

Flame picture recorded by camera inside the combustion chamber

Results from Dalmine test – flame appareance from front (long exp)

This work was carried out with support from the European Union's Research Fund for Coal and Steel (RFCS) research program under the ongoing project: DevH2forEAF- GA number: 101034081

- All the **tests** have been **successfully completed** *All combinations of* :
 - thermal power from 1.0 to 2.9 MW
 - composition from 100% CH₄ to 100% H₂
- Flame ignited regularly inside the combustion chamber
- Flame persisted in all the tests, without any ripping or shut-off

LEADING PARTNER WORLD OF METALS

